
Budgets, business cases and more
Creating a business case for technical communicators

Using methodologies: 
OBASHI and Lean

Expanding possibilities  
with MadCap Flare 12

Is your translated  
data secure?

Taking care of  
your health

The Institute of Scientific and Technical Communicators
Summer 2016

Communicator



Communicator Summer 2016

52 Word VBA macro tips

Introduction
In the first part of this article, I covered the most 
frequently used type of VBA loop, the For … 
Next loop. In this article, I will introduce the 
other types of loop that you can use.

Do … Loop
The Do … Loop is useful for those situations 
where you do not know what the start or final 
values of the loop will be, so you want the code 
to continue until a particular event occurs. Here 
is the pseudo-code for a Do … Loop:

Pseudo Code
Do
[Code statements/functions]
[Test for Exit]
[Additional Code statements/functions]

Loop

This form of loop can, if not thoroughly tested, 
create an ‘infinite loop’ – that is, you cannot stop 
it from running.

There should always been a way that your loop 
can exit via the Exit Do command. Naturally, you 
should always save your work before testing out 
a new Do … Loop in your code.

The following example code will loop indefinitely 
until the user enters the correct password:

Sub AskForPassword()
Dim strWord As String
Do
	 strWord = InputBox("What is the correct 
password?")
	 If strWord = "ISTC" Then Exit Do
Loop
MsgBox "You entered the correct password."
End Sub

Another way of preventing an infinite Do … Loop 
is to ask a question before the loop and use the 
answer as part of the exit strategy.

Sub DoLoopWithExitTest()
Dim intCount As Integer
Dim strAnswer As String
strAnswer = InputBox("How many loops?")
intCount = 1
Do
Debug.Print "This is loop #" & intCount
If intCount = CInt(strAnswer) Then Exit Do
intCount = intCount + 1

Loop
End Sub

Admittedly, the code above does not do a great 
deal as it just prints a set of numbers to the 
Immediate window, but it shows you how to Exit 
out of a Do … Loop.

Creating VBA loops: part 2
Looping the loop to save repeating code. By Mike Mee

While … Wend
The third type of loop is useful for those 
situations where the loop will run while the 
condition is true.

Pseudo Code
While <condition>
	 [Code statements/functions]
	 [Test for Exit]

Wend

This form of loop is, like the Do … Loop 
combination, one that could run infinitely if you 
have not included an ‘exit clause’ in your code.

The following example will go through all of 
the tables in your document and delete them 
all. A message box will appear afterwards giving 
you the total of tables deleted.

Sub DeleteAllTables()
Dim lngTable As Long
Dim lngTabCount As Long

' Initialise counter
lngTabCount = 0

' Get a count of the tables
lngTable = ActiveDocument.Tables.Count

' Loop through each table in document
With ActiveDocument
    While lngTable <> 0
        .Tables(lngTable).Delete
        lngTabCount = lngTabCount + 1
        lngTable = lngTable - 1
    Wend
End With
MsgBox lngTabCount & " tables were removed 
from your document."
End Sub

The best way to exit this particular loop is by 
executing the contents of the loop if there are 
no tables in the document. This is what the lngC 
<> 0 portion of the code does.

Here is another example of using a While 
… Wend loop. This time, the code will go 
through your document and remove all of the 
hyperlinks. This differs slightly to how the 
above example removed the tables.

Sub RemoveAllHyperlinks()
With ActiveDocument
    While .Hyperlinks.Count > 0
        .Hyperlinks(1).Delete
    Wend
End With
End Sub

The reason for the deleting the first hyperlink 
in each iteration is that when Word deletes it, 
all of the other hyperlinks move up by one. The 
second hyperlink becomes the first, and so on. 
This is why I covered the reverse For … Next 



Communicator Summer 2016

53

loop in the Spring 2016 article. Sometimes VBA 
forces you to go backwards, depending on what 
you need to do!

Note that there is no error checking in the 
While … Wend loop examples, but you can 
easily include a message box to ask the user if 
they want to unlock each table or delete each 
hyperlink.

Do While loops
This is a combination of the two previous loop 
types described. If the result of the check is 
false, the loop continues, otherwise it stops.

Pseudo Code
Do While <condition>
	 [Code statements/functions]
	 [Test for Exit]

Loop

Here is an updated example of the earlier  
Do … Loop password entry code, but this time using

Do While.

Sub AskForPassword2()
Dim strWord As String
Do While strWord <> "ISTC"
	 strWord = InputBox("What is the 
correct password?")
Loop
MsgBox "You entered the correct password."
End Sub

Do Until loops
This loop acts in a similar way to the Do While 
loop, but the loop continues until a condition 
becomes true and then it will stop.

Pseudo Code
Do Until <condition>
	 [Code statements/functions]
	 [Test for Exit]
Loop

Here is the same password entry example as 
before, but this time using Do Until.

Sub AskForPassword3()
Dim strWord As String
Do Until strWord = "ISTC"
	 strWord = InputBox("What is the 
correct password?")
Loop
MsgBox "You entered the correct password."
End Sub

For all of the password entry examples, you 
can change ‘ISTC’ to whatever you want.

For Each loops
Finally, we have the For Each type of loop. 

Pseudo Code
For Each WordObjectType In Collection
    [Code statements/functions]

    [Test for Exit]
    [Additional Code statements/functions]
Next

Defining variables 
There are three places where you can declare your variables: 
1.	 within the procedure (also known as local variables)
2.	 within the module
3.	 at global level.

Variable defined within the procedure 
The usual place to declare variables is within a procedure before you need to 
use the variable. You can declare a variable, using Dim at any time up to the 
first time you use the variable.  

Some programmers like to place all variable declarations at the start of the 
procedure, but that is not necessary. However, it might ensure that your code 
becomes a lot more readable when you need to debug it.  

Here’s an example which places the Dim statement within the Sub / End 
Sub commands: 
Sub DisplayName() 
Dim strWord As String 
    strWord = InputBox("What is the your name?")  
    MsgBox "Your name is " & strWord & "." 
End Sub 

Variable defined at module level 
You can declare variables at the module level using the Private command. 
Module-level variables are available to all procedures in the module. Place any 
module-level variables before the first procedure in the module. For example: 
Option Explicit 
Private strWord As String 
Sub DisplayName() 
    strWord = InputBox("What is the your name?")  
    MsgBox "Your name is " & strWord & "." 
End Sub 

Variable defined at global level 
The third option is to define the variable at global level using the Public 
command. This ensures that every module, and every subroutine within your 
code, can use this particular variable. For example: 
Option Explicit 
Public strWord As String 
Sub DisplayName() 
    strWord = InputBox("What is the your name?")  
    MsgBox "Your name is " & strWord & "." 
End Sub

Figure 1. Defining variables 

Table 1. Types of variables 

Variable Type What can be stored in it

Boolean True or False values. 

Byte 0 to 255. 

Integer -32,768 to +32,768. 

Long Values can be from approximately -2 billion to +2 billion. 

Currency Decimal numbers with as many as 19 digits.

Single Single-precision, floating-point numbers.

Double Double-precision, floating-point numbers.

Date A date or time value. 

String Text

Object Any object, such as a Word document or a window.

Variant A generic number or string.

Note: Single or Double variables are more useful in Excel than Word.



Communicator Summer 2016

54 Word VBA macro tips

This type of loop is useful for going through 
particular Word objects, such as the complete 
document, or the contents thereof, including 
tables, images, comments and paragraphs.

For those of you reading this and wondering 
how I will tweak the password entry test as a 
For Each loop, I will have to disappoint you. 
This kind of loop is not suitable for that kind 
of work, so I will include some completely 
different examples.

In the first example, the For Each loop will go 
through all of the documents that are currently 
open, and add their filenames to a string called 
strName. After the loop is complete, strName will 
contain every filename. The MsgBox command 
will display all of the filenames afterwards.

Sub ListAllDocuments()
Dim objDoc As Object
Dim strName As String
For Each objDoc In Documents 
	 strName = strName & objDoc.Name & 
vbCr
Next objDoc
MsgBox “Documents open:” & vbLf & vbLf & 
strName
End Sub

This example uses vbCr for a carriage return 
and vbLf for a line feed.

For the second For Each example, the code 
will go through every paragraph in your 
document and remove the bottom border.

Sub RemoveAllHorizontalLines()
Dim parLines As Paragraph
With ActiveDocument
	 For Each parLines In .Paragraphs
	 parLines.Borders(wdBorderBottom).
LineStyle =wdLineStyleNone
	 Next parLines
End With
End Sub

You might notice that the code does not 
check if the formatting is already there, it just 
assumes that your text in each paragraph has 
that formatting enabled. I will leave it up to you 
to add that check to the code.

The final example of a For Each loop is taken 
directly from my Word Toolbox. This code 
removes the footers from each page so that I 
can insert my table with the various fields for 
document title, page number and such like. 

Do not worry; I am not going to drop code of 
that magnitude into this article, as that would 
be cruel. I will break down the code to a simpler 
level and show you how to clear both the headers 
and footers from the document using an outer 
For Each loop, with two For Each loops inside, one 
covering the headers, the other for the footers.

Sub ZapHeaderAndFooter()
Dim objSection As Section
Dim oHF As HeaderFooter

With ActiveDocument

' Loop through each section
For Each objSection In .Sections

	 ' Loop through the headers
	 For Each oHF In objSection.Headers
		  oHF.Range.Delete
	 Next
	 ' Loop through the footers
	 For Each oHF In objSection.Footers
		  oHF.Range.Delete
	 Next

' Next section
Next objSection
End With
End Sub

The above code loops through each section 
in your document. As each section can have 
different header and footer types, two further 
loops are required. The first sub-loop goes 
through each header and deletes its contents. 
The second sub-loop does the same for  
every footer. Then the code moves onto  
the next section, and so on, until the end  
of the document.

Loop Optimisation
You can speed up your loops, especially if you 
are intending to use them on large documents. 
Some of the easiest ways to implement this are:
�� use the With command
�� turn off the screen updates
�� if the document is using Track Changes, turn 
them off, albeit temporarily.

With Command
The With command has two benefits. It can 
make your code easier to read and it can speed 
it up. It follows this layout:

With objectExpression
	 [statements]
End With

I have been including examples of the With 
command in a lot of my articles. Here is a 
simple example.

With ActiveDocument.Paragraphs(1).Range
	 .Font.Bold = True
	 .Font.Name = “Arial”
End With

All the above code does is change the font in 
the first paragraph to Arial and make it bold. 
The With command saved you from typing 
in ActiveDocument.Paragraphs(1).Range in 
front of both commands. Your code listing is 
smaller and VBA will speed up slightly because 
it is not having to go back up the chain to 
ActiveDocument, then to Paragraphs(1) and 
finally to Range before it applies the changes.

You can also nest With commands, using this 
layout (as an example):

With objectExpression
	 [statements]
	 With objectExpression2
		  [statements]
	 End With
End With



Communicator Summer 2016

55

Here is an example that has an outer With 
followed by two inner ones:

Private Sub DoubleWiths()

With ActiveDocument.Paragraphs(1)

	 With .Range.Font
		  .Bold = True
		  .Name = “Arial”
	 End With
	 .LineSpacingRule = wdLineSpaceSingle

	 With .Borders(1)
		  .LineStyle = 
wdLineStyleDouble
		  .ColorIndex = wdBlue
	 End With
End With
End Sub

The above example looks at the first 
paragraph and changes the text to bold. It sets 
the line spacing to single then adds a blue 
border (double-lined) around the text.

Imagine how long-winded that example would 
look if you had included each ActiveDocument.
Paragraphs(1) before each command.

Screen Display
The first is to tell Word not to update the 
screen. The VBA command Application.
ScreenUpdating toggles Word’s display updates 
on or off. Word stores the current value in a 
Boolean variable.

To turn the screen updates off:  
Application.ScreenUpdating = False

To turn the screen updates back on: 
Application.ScreenUpdating = True

If you insert this command before you start 
any of your loops, and switch it back on again 
after the loop has completed, the end user will 
not see anything happen until it is complete.

Track Changes
The second way is; check if Track Changes is on, 
switch it off, then switch it back on again after 
your code has finished. 

The Boolean variable that will store the 
current setting needs defining as a global 
variable via the Public and not Dim command.

In my Word Toolbox, I set all of my global 
variables up in a separate code module. This 
way, any other routine can use the variable 
without it redefining it in each module that will 
use it.

My article in the Autumn 2015 issue of 
Communicator, covers the different types of 
variables used in VBA in more depth. 

Public blnTrackChanges As Boolean

You can now store the current setting 
for Track  Changes, by querying the 

ActiveDocument.TrackRevisions command. You 
can work out if it is switched on or off in the 
current document, depending if the result is 
True or False.

In the following code example, I have not put 
the Sub/End Sub surrounds on this code; this 
is because you will insert it inside each routine 
that needs it. 

' Store current Track Changes current 
setting then switch them off
With ActiveDocument
	 blnTrackChanges = .TrackRevisions
	 .TrackRevisions = False
End With

When your macro has finished tweaking 
the document, you can then switch the Track 
Changes to its previous state.

' Restore Track Changes to its previous state
ActiveDocument.TrackRevisions = 
blnTrackChanges

The document will still have Track Changes 
switched on, if it was on when it was loaded, 
without any of the changes recorded.

However, you might prefer to see all of 
the changes that your macro(s) do to your 
document, so this is a personal choice.

The End (of the loop)?
I have now covered the main types of loop that 
you will use within your VBA macros. 

You now need to find something annoying 
about a particular item in one of your 
documents that you would normally have to 
clean up manually one-by-one – and automate it. 
Good luck, but remember to keep backups! C

Further reading
Mee M (2015) 'Variables and screen output/input' 
Communicator, Autumn 2015: 44-47

Mee M (2016) 'Creating VBA loops: part 1' 
Communicator, Spring 2016: 34-36

Microsoft ‘Declaring Variables’ https://msdn.
microsoft.com/en-us/library/office/gg264241.aspx
?f=255&MSPPError=-2147217396 (accessed April 
2016)

Mike Mee MISTC� is a technical author 
working at CDL in Stockport. 
E: mike.mee@cdl.co.uk 
T: @Mug_UK 
W: http://mikestoolbox.weebly.com – 

my toolkit for Word 2007-2016 (the full source code is 
also available on the website).

https://msdn.microsoft.com/en-us/library/office/gg264241.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/office/gg264241.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/office/gg264241.aspx?f=255&MSPPError=-2147217396
https://twitter.com/Mug_UK

	Contents
	From the editor
	Letters from readers
	President’s view
	Area Groups
	ISTC Community
	Could you win an award?
	Online groups
	FTI conference 2016: some reflections
	Explosions, code-breaking and more
	Will you join us for TCUK 2016?
	Exploring possibilities using Flare 12
	Budget, business case and beyond
	Seeing a new bigger picture?
	Become more productive and motivated
	Is your job affecting your health?
	Is your translated data secure?
	How mobile is changing our industry
	Creative DITA and specific requirements
	Communication – naturally
	Creating VBA loops: part 2
	MadCap tips
	Your ISTC directory
	Ethical dilemmas
	Book review
	Editing
	A day in the life
	10526_ISTC_Summer16_WEB38.pdf
	Contents
	From the editor
	Letters from readers
	President’s view
	Area Groups
	ISTC Community
	Could you win an award?
	Online groups
	FTI conference 2016: some reflections
	Explosions, code-breaking and more
	Will you join us for TCUK 2016?
	Exploring possibilities using Flare 12
	Budget, business case and beyond
	Seeing a new bigger picture?
	Become more productive and motivated
	Is your job affecting your health?
	Is your translated data secure?
	How mobile is changing our industry
	Creative DITA and specific requirements
	Communication – naturally
	Creating VBA loops: part 2
	MadCap tips
	Your ISTC directory
	Ethical dilemmas
	Book review
	Editing
	A day in the life




