
Study at the University of Limerick
Learn about a virtual technical communication course

Viable options for
replacing QWERTY

Have you thought about
working remotely?

Do women make better
technical communicators?

RoboHelp 2015 and
PerfectIt product reviews

The Institute of Scientific and Technical Communicators
Autumn 2015

Communicator

Communicator Autumn 2015

44 Word VBA macro tips

Variables and screen output/input
How to use variables and message boxes by Mike Mee.

In my first article, I covered the recording and
editing of macros. In this article, I will show you
the next steps, which is the use of variables (and
constants), followed by displaying information
to, and getting it from, the end user.

What are variables and constants?
Variables are used in programming languages
to store values. They are areas of memory
that, in this case, VBA, can use to store values,
such as a user’s name, their age, or their ISTC
Membership number.

In VBA, there are two types available:
variables and constants. Variables, as their
name suggests, can have their contents
changed, whereas constants have a value
assigned, and the code cannot change it.

Defining variables
Each variable is defined – that is, given an area of
memory to exist – by the use of the Dim command
in VBA. The name of the variable is inserted after
the Dim command, like this example:

Dim [VariableName]

In other languages based around BASIC, this
is normally all you would need to type. The
variable will exist in memory and you can store
whatever you like inside it.

However, VBA can define variables to hold
particular types of data only. Without adding
a data type (as per the above example), your
variable has become a variant data type because
it can store anything you want inside it.

You can define what type of data you want

to store in this new variable, by defining its data
type. The data type is specified after the new
variable’s name, as shown in this example:

Dim [VariableName] As [TypeOfVariable]

VBA provides a number of data types you can use
for variables, see Table 1.

Variable names must start with a letter. They
can be as long as 40 characters but can contain
only letters, numerals, and the underscore (_).
However, VBA-reserved words (such as function
names or statements) are not available to use as
variable names. For example, you cannot use Dim
as a variable name, because it already exists as a
function.

Examples of variables
Using some of the above data types in Table 1,
here are some variable name examples:

Dim strName As String
Dim intMembershipNum As Integer
Dim bolISTCMember As Boolean

These variables now exist in memory and VBA
knows what it can store inside them. I will be
using these variables in the input/output section
of this article later.

Defining your constants
Defining a constant is similar to the method for
defining variables, but you must include the value
that the constant will permanently hold.

Table 1. Types of variables
Variable Type What can be stored in it

Boolean True or False values.

Byte 0 to 255.

Integer 32,768 to +32,768.

Long Values can be from approximately -2 billion to +2 billion.

Currency Decimal numbers with as many as 19 digits.

Single Single-precision, floating-point numbers.

Double Double-precision, floating-point numbers.

Date A date or time value.

String Text

Object Any object, such as a Word document or a window.

Variant A generic number or string.

Note: Single or Double variables are more useful in Excel than Word. Figure 1. Tips for naming variables

Naming conventions

Out of habit, I define my variables along the lines
of the Leszynski naming convention which makes
it easier to read and/or debug your code. I prefix
each variable name with a three-letter code,
which matches the type of variable.

Whenever I see strName in my code,
I know that it is a string variable and
intMembershipNumber will only allow
integers.

However, if you prefer to use your own naming
scheme, go with that, although I would try to
avoid using single letters to define a variable
name. Trying to work out if the variable named ‘a‘
represents a string, an integer or a Boolean would
be painful in larger macros. http://en.wikipedia.
org/wiki/Leszynski_naming_convention#The_
LNC_Tags_for_VBA_Variables

Communicator Autumn 2015

45

For example, you need to store the value for the
version number of your program. You know that
this value is not going to change, not until you
release a new version, so you can define it as such:

Const strVersionNum As String = "Alpha"

A constant uses Const whereas a variable
uses Dim. The above example will never change
whilst the code is running. You cannot alter it
on the fly, so wherever you use it in your code,
it will always contain the word ‘Alpha’.

The same rules apply to defining constants
as they do for variables. If you try to define
a constant as a string, you will not be able to
store an integer in it. As an example, here is
an incorrect definition of a constant:

Const strVersionNum As Integer =
"Alpha"

The VBA Editor will complain as soon as you
press Enter to submit that line of code because
you are trying to store a string inside an integer.

Word’s built-in constants
Within VBA, there are constants that you can
use that are built-in. They generally help to
make your code readable.

To access all of the built-in constants, you
have to use the Object Browser function whilst
you are in the VBA Editor. Either press F2 or
click on View > Object Browser.

The Object Browser will give you the
background on any of the constants that are
available for you to use or examine. However,
it does not just cover the constants that are
built-in. Explaining what it will show you is out
of the range of this article, so I will upload a
more expansive view onto the ISTC website.

The Object Browser shows you the direct
value of the constant in the small window
underneath. In the example above, I have
selected the built-in constant wdYellow. This
is because, in the last article, you changed the
colour of the text to yellow. You can see that
wdYellow is a member of the WdColorIndex
class, which also holds all of the other
standard colours available. The colours and
their associated constants appear in the larger
window below.

You could, if you wanted to, return to your
original macro, and change the code so that
wdYellow is now wdPink, see Figure 3. Re-run
it to change the text from yellow to pink.

Switching on Option Explicit
Before I move on to screen input and output,
one last tip for tidy macro coding is to switch
on VBA’s Option Explicit option.

This allows VBA to ensure that you define
every variable prior to its use. If you refer to

the variable strName before VBA has found a
matching Dim definition for it, it will stop the
macro at that point with an error message.

This error will also crop up if you have
defined the strName within a module, but
then tried to use it elsewhere. See the previous
section: ‘Where to set up your variables’.

You can switch on Option Explicit at module
level, by typing in Option Explicit at the top
of every module you use.

Alternatively, you can switch it on at project
level so that VBA automatically adds it to each
module by selecting the Require Variable
Declaration option which is under Tools >
Options > Editor within the VBA Editor.

Screen output and input
As I will not be covering the use of your own
custom designed forms for some time to come
in these articles, the second half of this issue’s
article will cover message and input boxes.

These methods are the easiest way to either
display a message to the user or request some
input from them – hence their names.

Figure 3. Amended code example from Communicator Summer 2015

Figure 2. Object Browser

Sub MyFirstMacro()

'
' MyFirstMacro Macro
'
	 Selection.WholeStory
	 Selection.ParagraphFormat.Alignment =
		 wdAlignParagraphRight
	 Selection.Font.Size = 20
	 Selection.Range.HighlightColorIndex = wdPink
	 Selection.Font.Bold = True
End Sub

Communicator Autumn 2015

46

Mike Mee MISTC is a technical author
working at CDL in Stockport.
T: @Mug_UK
E: mike.mee@cdl.co.uk
W: http://mikestoolbox.weebly.com
– my toolkit for Word 2007–2013

(the full source code is also available on the website).

Message boxes
First, I will cover message boxes. These take
the form of a simple dialog that appears in the
centre of your screen. The user reads the text
inside the message box and then clicks one of
the button(s) available.

The simplest example is one that just displays
a message and the end user clicks the OK button.

Sub Display_Message()
	 Msgbox “Hello World!”
End Sub

The above example will display the message
within a message box dialog. The user cannot
remove this dialog (known as a modal dialog)
without clicking on the OK button that appears.

This could be useful, for example, in those
situations when your macro has completed and
you need to alert the user that the process has
finished. Alternatively, you could use it as part
of your debugging process by adding message
boxes before and after a function to show the
contents of variables used.

You can change the type of icon displayed
inside the message box, by adding an additional
parameter after your text message:

MsgBox "Hello World!", vbExclamation

In this example, you see the same ‘Hello World’
message on-screen, but instead the icon is now
an exclamation mark.

There are several built-in constants in VBA
that you can use, along with your message box,
see Table 2.

Input boxes
The input box is similar to the message box in
how it appears on screen, but you can ask the
user to enter some information. The result is
stored in a variable, so that you can examine
the content afterwards.

Sub GetName()
	 Dim strName As String
     strName = InputBox ("Enter your name")
	 MsgBox "You entered: " & strName
End Sub

Word VBA macro tips

In the above example, I created a variable called
strName, and then displayed an input box
asking the user to ‘Enter your name’. As soon as
the user presses Enter, or clicks the OK button,
whatever they have typed into the input box is
now stored in strName. I can then display what
the user entered via a message box.

Simple variable checking
Note: This topic will be covered in more detail in
the next article. For now, I will cover some of the
simpler functionality so that you can quickly test
a response received from a message box or an
input box.

VBA, as with all variants of the BASIC
language, has the ability to examine the values
of variables and constants. This can be done via
the If and Then commands.

Using these commands you can test the
contents of a variable and If x is a particular
value, Then do something.

For example, you might want to check that your
end user has entered something into strName
after the InputBox asked them a question.

If strName = "" Then
	 MsgBox "Nothing was entered."
End If

The code above is checking that the variable
strName has nothing in it at all. This could be
due to the end user either typing nothing at the
prompt and clicking Enter, or clicking on the
Cancel button.

Similarly, with message boxes, you can test
the value of the button clicked. This will also be
covered in the next article.

The end result
To end this article, the code example in Figure 4
will show how you can use variables, constants,
message and input boxes. I have added a bit of
an ISTC branding to it. C

Referencee

Mee M (2015) 'Enhancing Word with VBA macros'
Communicator, Summer 2015: 20–23

Table 2. Built-in constants
Constant Icon

vbCritical

vbQuestion

vbExclamation

vbInformation

https://twitter.com/Mug_UK

Communicator Autumn 2015

47

01483 211533 contact@3di-info.com www.3di-info.com

Technical Communication
• supply of technical authors
• managed outsourced teams
• information & document design
• modular writing training
• tools & process strategy
• software usability testing

Localization & Translation
• software products & online help
• website & e-learning content
• interactive & audio content
• technical & compliance documents
• multi-lingual translation
• scalable localization testing

“We have been very happy with the service provided
by 3di. They have the know-how, the relevant
experience and the project managers to deliver our
projects and adhere to our high standards”Joseph Nosbuesh, Head of Documentation Management, Roche Diagnostics

Figure 4. A msgbox, inputbox and variable example.

Sub GetMemberDetails()

Dim strName As String
Dim intMembershipNum As Integer
Dim bolISTCMember As Boolean

' First we set up the Boolean to determine the validity of the ISTC member
bolISTCMember = True

' Display the welcome message
MsgBox "Welcome to ISTC. Please enter your name and membership number to continue.", vbInformation

' Ask their name
strName = InputBox("Enter your name")

' If nothing is entered, then we must assume they're not genuine ISTC members
If strName = "" Then
	 MsgBox "No name was entered.", vbCritical
	 bolISTCMember = False
End If

' Ask for their ISTC Membership number
intMembershipNum = InputBox("Enter your ISTC Membership number")

' If nothing is entered, then we must assume they're not genuine ISTC members
If intMembershipNum = "" Then
	 MsgBox "No ISTC Membership number was entered.", vbCritical
	 bolISTCMember = False
End If

' If they've entered both sets of details, we assume they're genuine.
If bolISTCMember = True Then
	 MsgBox "Welcome to ISTC, " & strName & "!", vbInformation
Else
	 MsgBox "Either your name or your membership number were not recognised.", vbCritical
End If

End Sub

http://www.3di-info.com

Institute of Scientific and Technical Communicators
The home of technical communication excellence in the UK

T:	 +44 (0)20 8253 4506
F:	 +44 (0)20 8253 4510
E:	 istc@istc.org.uk
W:	istc.org.uk

If you enjoyed this article, visit our website to see what else we do.

The Institute of Scientific and Technical Communicators is
the largest UK body representing information development
professionals, serving both our members and the wider technical
communication community.

See what else we offer...

Professional development and recognition
Resources and opportunities to develop and diversify skills, stay up to date with trends
and technologies, and get recognition for achievements.

Our CPD (Continuous Professional Development) framework enables you to provide
evidence of your learning in all its forms, and our Awards programme gives you the
opportunity to showcase excellent work.

What the ISTC offers

ISTC Resources
The ISTC offers access to a range of resources, including our own books, various
templates, articles summarising key technical communication issues and discounted
British Standards publications.

Technical Communication UK
The ISTC hosts Technical Communication UK, the annual conference that aims to meet
the needs of technical communicators, their managers and clients, from every corner of
the industry.

Open to all, visit www.technicalcommunicationuk.com for the latest news.

ISTC Community
The ISTC offers opportunities to network, exchange expertise, and stay in touch with the
UK technical communication industry – through a range of online groups, local events,
and InfoPlus+ (our monthly newsletter).

You can find us on LinkedIn, Eventbrite, YouTube and Twitter (@ISTC_org).

Communicator professional journal
Communicator is the ISTC’s award-winning quarterly professional journal, covering the
breadth of technical communications, offering in-depth articles, case studies, book and
product reviews.

Now you’ve read a sample article, would you like to see more? The journal is free to our
members and is also available on subscription.

mailto:istc%40istc.org.uk?subject=
http://www.istc.org.uk
https://uktcawards.wordpress.com/
https://www.linkedin.com/grp/home?gid=1858546
https://www.youtube.com/user/ISTCtechcomm
https://twitter.com/ISTC_org

	Contents
	From the editor
	ISTC directory
	Presiden's view
	Member news
	Communicator
wins APEX Award of Excellence
	Area groups
	Online groups
	From newbie to retiree
	Building tech comms training from scratch
	Technical communication in the European capital
	Localization World Berlin 2015
	UA Europe 2015 comes to Southampton
	Studying in the virtual classroom
	Five benefits of gaming for businesses
	Perfect your editing with PerfectIt
	Working remotely
	Who  is  a  better  technical  communicator?
	Can we quit QWERTY?
	Where DITA enhancements come from
	A company-wide semantic network
	Variables and screen output/input
	Review of Adobe RoboHelp 2015 release
	The tools of choice
	An introduction to robotics
	Introducing the Top Navigation skin
	Book Review: Writing to persuade
	Real-life dilemmas: constructive feedback
	Real-life responses: when are you too old to work?
	How far should we go?
	Teleworking in 1994
	A day in the life: Fiona Heathcote

