
Learn more about Microsoft Word
Start to delve into VBA and create your own macros

Create and implement
personalised learning

What’s a technical metaphor?
Find out more.

Re-think your accessibility
requirements with SVG

The Institute of Scientific and Technical Communicators
Summer 2015

Discover how a security
technology team engaged
with customers

Communicator

A potted history of the BASIC behind Office

In Office 95, Microsoft added a programming option to enable
people to tinker with it and to replace some of the duller and more
repetitious tasks with code that just ‘does it all for you’ in an instant.

Word BASIC was the first variant and it was based on Microsoft’s
Quick BASIC.

Using simple commands, you could create Word macros to automate
some of the more tedious tasks.

A simple example of the usual ‘Hello World’ test in Word BASIC:

Sub MAIN
 FormatFont .Name = “Arial”, .Points = 10
 Insert “Hello World”
End Sub

In Office 97, the Office suite was upgraded to a new and
enhanced version of BASIC. This was similar to their main BASIC
programming suite, Visual BASIC 6. It was called “Visual Basic for
Applications”(VBA).

The code below is the same ‘Hello World’ example but this time
using VBA:

Sub Main()
 With Selection.Font
 .Name = “Arial”
 .Size = 10
 End With
 Selection.TypeText Text:=”Hello World”
End Sub

While there are some slight differences between the two examples
due to the commands used, they both inform the relevant versions of
Word that you want the ‘Hello World’ text displayed in Arial, size 10.

Communicator Summer 2015

20 Word VBA macro tips

Enhancing Word with VBA macros
An introduction to using VBA to fix documents by Mike Mee.

Working within a team of four technical authors
at CDL, we do a lot of work with Microsoft Word.

The types of Word-based work can range
from being sent a document to proofread and
send back with some simple changes (we like
these!) through to being sent what could only be
described as a dog’s dinner of a document that
is begging to be cleaned up.

I am sure that you have all seen those types
of document: the ones that you can almost
guarantee will have some combination of the
wrong font, an abhorrent justification setting,
portrait page footers incorrectly formatted as
landscape, and maybe the wrong header styles.

It is in our team’s job description to fix
these documents: we call it ‘CDLifying’. We
dive in and start applying the necessary fixes.
However, the fixes are achieved quickly by the
use of Word macros.

For as long as I have been using Word, I have
always been interested in how it ‘ticks’ under
the hood and how to speed up some of the more
mundane formatting and fixes that we need to do.

This article will be the first of several in which
I will give you some examples to follow so that
you can take your first tentative steps towards
coding your own macros in VBA (Visual Basic
for Applications).

Macros can be recorded by yourself either as
you perform a task (via the Macro Recorder), or
you can create them directly using VBA.

VBA is an enhanced version of BASIC (Beginner’s
All-purpose Symbolic Instruction Code) that is
similar to Microsoft’s Visual BASIC 6. I have been
coding in BASIC since the day my Dad brought
home a ZX Spectrum from the Kingston-upon-
Thames branch of Laskys back in 1983.

This article is based around Word 2013.
However, the majority of the functions will
be the same in Word 2010.

For those of you using any older version
(for example, Word 2007), the macro code will
generally be the same, although some of the
commands may have altered – or worse, have
been removed altogether!

Initial steps: switching on the Developer tab
By default, Word 2010 and 2013 both hide the
Developer tab from the initial Ribbon bar. In
order to use VBA, it needs to be on display.
1. On the File tab, choose Options to open the

Word Options dialog box.
2. Click the Customize Ribbon option on the

left-hand side.
3. On the right-hand side of the dialog box

will be a list of available tabs. Select the
Developer check box and click OK.

Word will now display the Developer tab. Within
the Ribbon, you will be able to see the Visual Basic,
Macros, Macro Security and Record Macro buttons.

Creating some target material
Before you create your macro, you need some
test text to use with it. If you go into the main
Word document display and type1:

=rand(10)

Press ENTER on the keyboard and 10
paragraphs of random text are created. You will
use these paragraphs as the target material for
your macro.

Save the result as a new document, for
example, MyMacroTest.docx, creating a backup
copy just in case.

Communicator Summer 2015

21

Your first macro
Word (along with all other Microsoft Office
applications) has a built-in Macro Recording option.

This feature will ‘watch’ what you do and
record it step-by-step and then recreate these
steps in VBA code.

The only downsides are that sometimes the
Macro Recorder can:
1. ‘Over-produce’ some of the functionality,

which, with some deft editing, you can cut
down to size.

2. Not record everything you want to.
Sometimes you have to code the functionality
yourself.

This initial article will cover the creation of a
simple macro that can be altered afterwards.

Start recording
As a simple example for your first macro, you
are going to open up your test document, select
all the text and then change the alignment to be
right-aligned.

Open up the MyMacroTest.docx file you
created earlier. On the Developer tab, click the
Record Macro button.

The first dialog box that pops up will be one to
ask what name you would like to call this macro.

By default, Word stores all of your macros
inside the Normal template. However, for our
example, you need to store your first macro
inside the same document as your random text.

Enter ‘MyFirstMacro’ as the name of your
new macro in the Macro name field. Change the
filename in the Store macro in drop-down box so
that it shows MyMacroTest.docx (document)
instead of Normal and then click OK.

Macro recording is enabled, and Word is now
recording every action you perform.

Note: you cannot use the right-mouse button
when recording a macro, so you will need to use
the paragraph alignment button on the Home tab.
1. Select the whole document (for example,

CTRL + A).
2. Change the alignment of the paragraphs to

be right-aligned.
3. Go back to the Developer tab and click

Stop Recording.
That’s your first macro recorded. Now you
can examine the code that the macro recorder
has generated.

VBA Editor: the hidden window
A separate area within Word displays the
generated VBA code. To view this area (the VBA
Editor window), press the keys ALT + F11, or click
the Visual Basic button on the Developer tab.

If you have two screens connected to your
PC, it might open on a separate screen to where
Word is currently running.
Within the VBA Editor (Figure 2) you will see
several windows. The first one you need to look
for is called Project and underneath will be a

tree structure showing the current files you
have open, including your test document and
the Normal template.
The code you have recorded will be stored
under the sub-section Modules. Under this
entry will be New Macros. If you double-click
on New Macros you will be shown the code that
was generated by the macro recorder.

These are the lines of VBA commands that
represent the actions that have been recorded.

Viewing the code
It should look like this:

Sub MyFirstMacro()
'
' MyFirstMacro Macro
'
 Selection.WholeStory
 Selection.ParagraphFormat.

End Sub

Understanding the code
Your simple macro can be broken down into
three separate parts:
1. The outside, which consists of the Sub and
End Sub commands.

2. The comments, which must be preceded by
an apostrophe.

3. The actual VBA code.

Figure 2. VBA Editor

Figure 1. Record Macro dialog

Alignment = wdAlignParagraphRight

Communicator Summer 2015

22

Note: All your macros will begin with Sub and
end with End Sub.

Word automatically adds the comments
(displayed in green) when it converts your
recorded actions into VBA code. It is entirely up
to you if you want to leave them there, remove
them or alter them to something more relevant.

Underneath the comments will be the actual
VBA code. It consists of just two lines of code:
1. The first line ensures that the next bit of code

operates on the whole document.
Selection.WholeStory
2. The second line uses the ParagraphFormat.
Alignment command to change everything to
be right-aligned.

 Selection.ParagraphFormat.Alignment =
wdAlignParagraphRight

That’s it! You have now created your first
VBA macro.

Running your macro
There are several ways to run your macro, but
I will cover the two easiest ones in this first
article. There are other methods, but they
are way out of scope for someone who is just
starting out creating macros in VBA.
 � Directly from the VBA Editor: click anywhere
between the Sub and End Sub that are each
end of your macro. Press F5 and your macro
will be run against the text.

 � Alternatively, click on the Macros button on
the Developer tab. Find the name of your
macro in the dialog box and select it, then
click the Run button to start the macro.

Either of these two options will run your macro
against the text in your document.

Saving your macro
The .docx format is one that does not allow
macros to be stored, so you will need to save the
document in the .docm format instead. Luckily,
Word recognises if your current document has
macros inside it and will warn you that it cannot
save it in the original format. Change the format
to ‘Word Macro-Enabled Document’ and save
your file as MyMacroTest.docm.

Whenever you open this new file up, you will be
able to access and tweak your recorded macro.

Editing your macro
Now that you have created your first macro, you
can add some extra features to it. Instead of
recording the additions via the Macro Recorder,
you are going to type them in.

Open your file, the .docm variant, not the
.docx one, and go into the VBA Editor.

After the last line of the code, before the End
Sub, press Enter a few times so that you have
some space to insert extra VBA commands.
1. Firstly you can increase the size of the text in

your document to size 20-point text. Insert

this command into the blank space:
Selection.Font.Size = 20

2. The next thing you can do is to change the
background highlight to yellow, so you enter
the following command:
Selection.Range.HighlightColorIndex
= wdYellow

3. Finally, in a mad rush of VBA power to your
head, you need to make sure each word is
displayed using bold. Therefore, your final
command to add into the listing is:
Selection.Font.Bold = True

4. Close the VBA Editor. Now select all of the
text and change the alignment back so that it
is left-aligned. Save your updated document.

The changes to your text will not appear until
you run the macro with the new changes.

Running your edited macro
If you use the same methods as described earlier
to run your macro, you should end up with
your test text displayed in bold, size 20-point
font and with yellow highlighting behind. This
will probably look a bit of a mess, but there is
nothing stopping you changing the parameters
of the code and re-running the macro.

If this does not happen and instead you are
presented with a message box telling you that
you have an error in your code, click the Debug
option and you will be taken to the line with
the error. Check that you have not made any
typing errors, and fix them if you have.

Microsoft Trust Center
Years ago, in the late 90s, I was earning my
crust as a helpdesk bod. I used to be sent
to a national broadcaster based in London,
who accepted scripts and whatnot in Word
format from outside sources without really
checking them. In those days, Word 2000’s
defences were quite weak and a particularly
nasty Word virus spread throughout the entire
organisation within a few hours!

Word VBA macro tips

Additional suggestions:

1. Note that “Selection” is the VBA object that
refers to the currently selected text. It gives
the context for the following method (action)
or property.

2. Try typing “Selection.” and see what you are
offered: a huge list of all the methods and
properties that might apply to selected text.

3. Start typing Font – see how the prompt helps
you pick up a valid property – this now gives
you a new object to work with (we call it
“drilling down”).

4. Type the . and see the list of valid properties
for the font object and complete that line.

5. Read back – you’ve changed the size OF THE
font OF THE selection.

Communicator Summer 2015

23

The Trust Center was introduced in
Office 2007 and it is Microsoft’s answer to
preventing self-copying VBA viruses from
infecting your version of Word, and that of
your other colleagues. The default settings are
for any document that is opened is blocked
from running any of the macros that might
be present. The Trust Center’s messages
appear above the document in the same style
of message that the Office Compatibility
‘warning’ does with the bright yellow
background.

You have to click the ‘Allow’ button to
unblock the macro code. You can change
the level of security implemented via the
File>Options>Trust Center configuration.
Naturally, if you work in an organisation with
a strict policy on macros, you might not be
allowed to change this. Personally, mine is
switched off completely, but you might not
want that – or be allowed it!

Other examples you could try doing
Now that you have the hang of recording a
simple macro, it is time to either dive in and
add more steps to the macro that you have
been editing and running.

Remember to reset your text to the standard
format that you began with (use Word’s Undo
feature) as this helps you work out what is
happening each time you change the macro
code. There will be a new area on the ISTC
website in the Resources section which will
contain some hints, tips and new macros to
either try and create, or go through step-by-step
to help you understand how they were created.

What next?
In the follow-up to this article, I will be
explaining how to enhance your macros by the

Mike Mee MISTC is is a technical
author working at CDL in Stockport.
E: mike.mee@cdl.co.uk
T: @Mug_UK
W: http://mikestoolbox.weebly.com

– my toolkit for Word 2010/2013
(the full source code is also available on the website).

use of message boxes and input boxes. The use
of input boxes requires variables, so I will also
be covering the multiple types of variable that
you can use in VBA.

From there I will cover the use of loops to go
through the elements (paragraphs, sections,
headers/footers etc.) of your document.

After these are covered, who knows what
functions of Word I might be requested to
breakdown into VBA.

Getting in touch
I am more than happy to lend a hand to
budding VBA code creators. I recently joined the
ISTC Yahoo group, so it is probably best to post
your query in there first.

My Twitter ID is a shortened version of both
‘Mugger Boot’ and ‘Mug Of Tea’. Two nicknames
I picked up at school as I was the ‘only
northerner‘ in a south London comprehensive.
I used to play football in Doc Martens boots and
I apparently drank copious amounts of tea! C

For a demonstration, register at

Get SMEs interested
in your technical communication worfklow

Further reading
1 Microsoft (2011) How to insert sample text into
 a document in Word
 https://support.microsoft.com/en-us
 /kb/212251 (accessed April 2015)

mailto:mike.mee%40cdl.co.uk?subject=
https://twitter.com/Mug_UK
http://mikestoolbox.weebly.com
https://support.microsoft.com/en-us/kb/212251
https://support.microsoft.com/en-us/kb/212251
http://www.webworks.com/clouddrafts

Institute of Scientific and Technical Communicators
The home of technical communication excellence in the UK

T: +44 (0)20 8253 4506
F: +44 (0)20 8253 4510
E: istc@istc.org.uk
W: istc.org.uk

If you enjoyed this article, visit our website to see what else we do.

The Institute of Scientific and Technical Communicators is
the largest UK body representing information development
professionals, serving both our members and the wider technical
communication community.

See what else we offer...

Professional development and recognition
Resources and opportunities to develop and diversify skills, stay up to date with trends
and technologies, and get recognition for achievements.

Our CPD (Continuous Professional Development) framework enables you to provide
evidence of your learning in all its forms, and our Awards programme gives you the
opportunity to showcase excellent work.

What the ISTC offers

ISTC Resources
The ISTC offers access to a range of resources, including our own books, various
templates, articles summarising key technical communication issues and discounted
British Standards publications.

Technical Communication UK
The ISTC hosts Technical Communication UK, the annual conference that aims to meet
the needs of technical communicators, their managers and clients, from every corner of
the industry.

Open to all, visit www.technicalcommunicationuk.com for the latest news.

ISTC Community
The ISTC offers opportunities to network, exchange expertise, and stay in touch with the
UK technical communication industry – through a range of online groups, local events,
and InfoPlus+ (our monthly newsletter).

You can find us on LinkedIn, Eventbrite, YouTube and Twitter (@ISTC_org).

Communicator professional journal
Communicator is the ISTC’s award-winning quarterly professional journal, covering the
breadth of technical communications, offering in-depth articles, case studies, book and
product reviews.

Now you’ve read a sample article, would you like to see more? The journal is free to our
members and is also available on subscription.

mailto:istc%40istc.org.uk?subject=
http://www.istc.org.uk
https://uktcawards.wordpress.com/
https://www.linkedin.com/grp/home?gid=1858546
https://www.youtube.com/user/ISTCtechcomm
https://twitter.com/ISTC_org

	From the editor
	Member news
	Area groups
	President’s view
	Online groups
	Event news
	Continuous professional development (CPD)
	How do you design for findability?
	FAQs for reviewers of manuals
	Enhancing Word with VBA macros
	Embracing topic-based authoring
	How to create personalised learning
	The power of two!
	What’s the matter with a metaphor?
	Accessibility of SVG hypergraphics
	Engaging with customers: part 3
	The future of virtual reality
	Success with desktop publishing
	Reflections – Andrew Peck
	MadCap tips – Marjorie Jones
	ISTC directory
	Ethical dilemmas – Warren Singer
	Book review – Damien Braniff
	Editing – Jean Rollinson
	A day in the life – Ant Davey

